Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reversible glutathionylation of Sir2 by monothiol glutaredoxins Grx3/4 regulates stress resistance.

Identifieur interne : 000422 ( Main/Exploration ); précédent : 000421; suivant : 000423

Reversible glutathionylation of Sir2 by monothiol glutaredoxins Grx3/4 regulates stress resistance.

Auteurs : Núria Vall-Llaura [Espagne] ; Gemma Reverter-Branchat [Espagne] ; Celia Vived [Espagne] ; Naomi Weertman [Espagne] ; María José Rodríguez-Colman [Espagne] ; Elisa Cabiscol [Espagne]

Source :

RBID : pubmed:27085841

Descripteurs français

English descriptors

Abstract

The regulatory mechanisms of yeast Sir2, the founding member of the sirtuin family involved in oxidative stress and aging, are unknown. Redox signaling controls many cellular functions, especially under stress situations, with dithiol glutaredoxins (Grxs) playing an important role. However, monothiol Grxs are not considered to have major oxidoreductase activity. The present study investigated the redox regulation of yeast Sir2, together with the role and physiological impact of monothiol Grx3/4 as Sir2 thiol-reductases upon stress. S-glutathionylation of Sir2 upon disulfide stress was demonstrated both in vitro and in vivo, and decreased Sir2 deacetylase activity. Physiological levels of nuclear Grx3/4 can reverse the observed post-translational modification. Grx3/4 interacted with Sir2 and reduced it after stress, thereby restoring telomeric silencing activity. Using site-directed mutagenesis, key cysteine residues at the catalytic domain of Sir2 were identified as a target of S-glutathionylation. Mutation of these residues resulted in cells with increased resistance to disulfide stress. We provide new mechanistic insights into Grx3/4 regulation of Sir2 by S-deglutathionylation to increase cell resistance to stress. This finding offers news perspectives on monothiol Grxs in redox signaling, describing Sir2 as a physiological substrate regulated by S-glutathionylation. These results might have a relevant role in understanding aging and age-related diseases.

DOI: 10.1016/j.freeradbiomed.2016.04.008
PubMed: 27085841


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reversible glutathionylation of Sir2 by monothiol glutaredoxins Grx3/4 regulates stress resistance.</title>
<author>
<name sortKey="Vall Llaura, Nuria" sort="Vall Llaura, Nuria" uniqKey="Vall Llaura N" first="Núria" last="Vall-Llaura">Núria Vall-Llaura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia</wicri:regionArea>
<wicri:noRegion>Catalonia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reverter Branchat, Gemma" sort="Reverter Branchat, Gemma" uniqKey="Reverter Branchat G" first="Gemma" last="Reverter-Branchat">Gemma Reverter-Branchat</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia</wicri:regionArea>
<wicri:noRegion>Catalonia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vived, Celia" sort="Vived, Celia" uniqKey="Vived C" first="Celia" last="Vived">Celia Vived</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia</wicri:regionArea>
<wicri:noRegion>Catalonia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weertman, Naomi" sort="Weertman, Naomi" uniqKey="Weertman N" first="Naomi" last="Weertman">Naomi Weertman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia</wicri:regionArea>
<wicri:noRegion>Catalonia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez Colman, Maria Jose" sort="Rodriguez Colman, Maria Jose" uniqKey="Rodriguez Colman M" first="María José" last="Rodríguez-Colman">María José Rodríguez-Colman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia</wicri:regionArea>
<wicri:noRegion>Catalonia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cabiscol, Elisa" sort="Cabiscol, Elisa" uniqKey="Cabiscol E" first="Elisa" last="Cabiscol">Elisa Cabiscol</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain. Electronic address: elisa.cabiscol@cmb.udl.cat.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia</wicri:regionArea>
<wicri:noRegion>Catalonia</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27085841</idno>
<idno type="pmid">27085841</idno>
<idno type="doi">10.1016/j.freeradbiomed.2016.04.008</idno>
<idno type="wicri:Area/Main/Corpus">000444</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000444</idno>
<idno type="wicri:Area/Main/Curation">000444</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000444</idno>
<idno type="wicri:Area/Main/Exploration">000444</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reversible glutathionylation of Sir2 by monothiol glutaredoxins Grx3/4 regulates stress resistance.</title>
<author>
<name sortKey="Vall Llaura, Nuria" sort="Vall Llaura, Nuria" uniqKey="Vall Llaura N" first="Núria" last="Vall-Llaura">Núria Vall-Llaura</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia</wicri:regionArea>
<wicri:noRegion>Catalonia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reverter Branchat, Gemma" sort="Reverter Branchat, Gemma" uniqKey="Reverter Branchat G" first="Gemma" last="Reverter-Branchat">Gemma Reverter-Branchat</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia</wicri:regionArea>
<wicri:noRegion>Catalonia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vived, Celia" sort="Vived, Celia" uniqKey="Vived C" first="Celia" last="Vived">Celia Vived</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia</wicri:regionArea>
<wicri:noRegion>Catalonia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weertman, Naomi" sort="Weertman, Naomi" uniqKey="Weertman N" first="Naomi" last="Weertman">Naomi Weertman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia</wicri:regionArea>
<wicri:noRegion>Catalonia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez Colman, Maria Jose" sort="Rodriguez Colman, Maria Jose" uniqKey="Rodriguez Colman M" first="María José" last="Rodríguez-Colman">María José Rodríguez-Colman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia</wicri:regionArea>
<wicri:noRegion>Catalonia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cabiscol, Elisa" sort="Cabiscol, Elisa" uniqKey="Cabiscol E" first="Elisa" last="Cabiscol">Elisa Cabiscol</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain. Electronic address: elisa.cabiscol@cmb.udl.cat.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia</wicri:regionArea>
<wicri:noRegion>Catalonia</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Free radical biology & medicine</title>
<idno type="eISSN">1873-4596</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aging (genetics)</term>
<term>Aging (pathology)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Cysteine (genetics)</term>
<term>Disulfides (toxicity)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (genetics)</term>
<term>Glutathione (metabolism)</term>
<term>Mutagenesis, Site-Directed (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (genetics)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Protein Processing, Post-Translational (genetics)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Silent Information Regulator Proteins, Saccharomyces cerevisiae (genetics)</term>
<term>Silent Information Regulator Proteins, Saccharomyces cerevisiae (metabolism)</term>
<term>Sirtuin 2 (genetics)</term>
<term>Sirtuin 2 (metabolism)</term>
<term>Stress, Physiological (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cystéine (génétique)</term>
<term>Disulfures (toxicité)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (génétique)</term>
<term>Glutathion (métabolisme)</term>
<term>Maturation post-traductionnelle des protéines (génétique)</term>
<term>Mutagenèse dirigée (MeSH)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines SIR de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines SIR de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sirtuine-2 (génétique)</term>
<term>Sirtuine-2 (métabolisme)</term>
<term>Stress oxydatif (génétique)</term>
<term>Stress physiologique (génétique)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Vieillissement (anatomopathologie)</term>
<term>Vieillissement (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cysteine</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Oxidoreductases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Silent Information Regulator Proteins, Saccharomyces cerevisiae</term>
<term>Sirtuin 2</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Vieillissement</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Aging</term>
<term>Oxidative Stress</term>
<term>Protein Processing, Post-Translational</term>
<term>Saccharomyces cerevisiae</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cystéine</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Oxidoreductases</term>
<term>Protéines SIR de Saccharomyces cerevisiae</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Sirtuine-2</term>
<term>Stress oxydatif</term>
<term>Stress physiologique</term>
<term>Vieillissement</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Oxidoreductases</term>
<term>Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Silent Information Regulator Proteins, Saccharomyces cerevisiae</term>
<term>Sirtuin 2</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Oxidoreductases</term>
<term>Protéines SIR de Saccharomyces cerevisiae</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
<term>Sirtuine-2</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Aging</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Disulfides</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Disulfures</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Mutagenesis, Site-Directed</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Mutagenèse dirigée</term>
<term>Oxydoréduction</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The regulatory mechanisms of yeast Sir2, the founding member of the sirtuin family involved in oxidative stress and aging, are unknown. Redox signaling controls many cellular functions, especially under stress situations, with dithiol glutaredoxins (Grxs) playing an important role. However, monothiol Grxs are not considered to have major oxidoreductase activity. The present study investigated the redox regulation of yeast Sir2, together with the role and physiological impact of monothiol Grx3/4 as Sir2 thiol-reductases upon stress. S-glutathionylation of Sir2 upon disulfide stress was demonstrated both in vitro and in vivo, and decreased Sir2 deacetylase activity. Physiological levels of nuclear Grx3/4 can reverse the observed post-translational modification. Grx3/4 interacted with Sir2 and reduced it after stress, thereby restoring telomeric silencing activity. Using site-directed mutagenesis, key cysteine residues at the catalytic domain of Sir2 were identified as a target of S-glutathionylation. Mutation of these residues resulted in cells with increased resistance to disulfide stress. We provide new mechanistic insights into Grx3/4 regulation of Sir2 by S-deglutathionylation to increase cell resistance to stress. This finding offers news perspectives on monothiol Grxs in redox signaling, describing Sir2 as a physiological substrate regulated by S-glutathionylation. These results might have a relevant role in understanding aging and age-related diseases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27085841</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>01</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>01</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-4596</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>96</Volume>
<PubDate>
<Year>2016</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>Free radical biology & medicine</Title>
<ISOAbbreviation>Free Radic Biol Med</ISOAbbreviation>
</Journal>
<ArticleTitle>Reversible glutathionylation of Sir2 by monothiol glutaredoxins Grx3/4 regulates stress resistance.</ArticleTitle>
<Pagination>
<MedlinePgn>45-56</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.freeradbiomed.2016.04.008</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0891-5849(16)30019-3</ELocationID>
<Abstract>
<AbstractText>The regulatory mechanisms of yeast Sir2, the founding member of the sirtuin family involved in oxidative stress and aging, are unknown. Redox signaling controls many cellular functions, especially under stress situations, with dithiol glutaredoxins (Grxs) playing an important role. However, monothiol Grxs are not considered to have major oxidoreductase activity. The present study investigated the redox regulation of yeast Sir2, together with the role and physiological impact of monothiol Grx3/4 as Sir2 thiol-reductases upon stress. S-glutathionylation of Sir2 upon disulfide stress was demonstrated both in vitro and in vivo, and decreased Sir2 deacetylase activity. Physiological levels of nuclear Grx3/4 can reverse the observed post-translational modification. Grx3/4 interacted with Sir2 and reduced it after stress, thereby restoring telomeric silencing activity. Using site-directed mutagenesis, key cysteine residues at the catalytic domain of Sir2 were identified as a target of S-glutathionylation. Mutation of these residues resulted in cells with increased resistance to disulfide stress. We provide new mechanistic insights into Grx3/4 regulation of Sir2 by S-deglutathionylation to increase cell resistance to stress. This finding offers news perspectives on monothiol Grxs in redox signaling, describing Sir2 as a physiological substrate regulated by S-glutathionylation. These results might have a relevant role in understanding aging and age-related diseases.</AbstractText>
<CopyrightInformation>Copyright © 2016 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vall-Llaura</LastName>
<ForeName>Núria</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reverter-Branchat</LastName>
<ForeName>Gemma</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vived</LastName>
<ForeName>Celia</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weertman</LastName>
<ForeName>Naomi</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rodríguez-Colman</LastName>
<ForeName>María José</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cabiscol</LastName>
<ForeName>Elisa</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Departament de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Edifici Biomedicina I, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Catalonia, Spain. Electronic address: elisa.cabiscol@cmb.udl.cat.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>04</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Free Radic Biol Med</MedlineTA>
<NlmUniqueID>8709159</NlmUniqueID>
<ISSNLinking>0891-5849</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516012">Grx4 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D038281">Silent Information Regulator Proteins, Saccharomyces cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="C545181">Grx3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.-</RegistryNumber>
<NameOfSubstance UI="C087778">SIR2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.-</RegistryNumber>
<NameOfSubstance UI="D056565">Sirtuin 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000375" MajorTopicYN="N">Aging</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038281" MajorTopicYN="N">Silent Information Regulator Proteins, Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056565" MajorTopicYN="N">Sirtuin 2</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Glutathionylation</Keyword>
<Keyword MajorTopicYN="Y">Grx3/4</Keyword>
<Keyword MajorTopicYN="Y">Monothiol glutaredoxins</Keyword>
<Keyword MajorTopicYN="Y">Redox Signaling</Keyword>
<Keyword MajorTopicYN="Y">Stress resistance</Keyword>
<Keyword MajorTopicYN="Y">Yeast Sir2</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>12</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>03</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>04</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>4</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>4</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27085841</ArticleId>
<ArticleId IdType="pii">S0891-5849(16)30019-3</ArticleId>
<ArticleId IdType="doi">10.1016/j.freeradbiomed.2016.04.008</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
</list>
<tree>
<country name="Espagne">
<noRegion>
<name sortKey="Vall Llaura, Nuria" sort="Vall Llaura, Nuria" uniqKey="Vall Llaura N" first="Núria" last="Vall-Llaura">Núria Vall-Llaura</name>
</noRegion>
<name sortKey="Cabiscol, Elisa" sort="Cabiscol, Elisa" uniqKey="Cabiscol E" first="Elisa" last="Cabiscol">Elisa Cabiscol</name>
<name sortKey="Reverter Branchat, Gemma" sort="Reverter Branchat, Gemma" uniqKey="Reverter Branchat G" first="Gemma" last="Reverter-Branchat">Gemma Reverter-Branchat</name>
<name sortKey="Rodriguez Colman, Maria Jose" sort="Rodriguez Colman, Maria Jose" uniqKey="Rodriguez Colman M" first="María José" last="Rodríguez-Colman">María José Rodríguez-Colman</name>
<name sortKey="Vived, Celia" sort="Vived, Celia" uniqKey="Vived C" first="Celia" last="Vived">Celia Vived</name>
<name sortKey="Weertman, Naomi" sort="Weertman, Naomi" uniqKey="Weertman N" first="Naomi" last="Weertman">Naomi Weertman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000422 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000422 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27085841
   |texte=   Reversible glutathionylation of Sir2 by monothiol glutaredoxins Grx3/4 regulates stress resistance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27085841" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020